钌回收、锇回收以及它们的氧化物是预期在未来的半导体器件(例如,铁电存储器和逻辑芯片)中用做电极的材料。这些材料具有引人注目的物理性能,如低电阻、高功函、抗层间化学扩散以及热和氧化稳定性。此外,钌、锇以及它们的氧化物生产出的薄膜具有的晶格参数和热膨胀系数使它们能与未来的半导体器件预期使用的许多介电材料相容。
化学汽相淀积(CVD)是一种在半导体器件制造中广泛应用的技术,以生产制造所述器件的材料层。将CVD化合物(称做前体)以汽相输送至或接近一个表面,在这里通过某种方式(例如热、化学或等离子活化)将它们分解以生成所需材料组成的固体薄膜。在很多出版物中展示了CVD技术在生产半导体器件用钌和氧化钌薄膜中的应用。参见,例如,WO 00/12766。如果采用CVD技术将钌和锇化合物引入工业半导体器件中,则需要适合用做CVD前体的这些材料。而且,曾经有过一些有希望的报道,应用环戊二烯基钌(II)配合物和羰基钌(O)配合物作为CVD前体。美国专利No.6,114,557公开了羰基钌(O)配合物的合成路线。
式LxM(CO)y[L=中性配体,M=钌或锇,x=1-4,且y=1-5]化合物的制备可追溯到1960年代晚期,当时在科技文献中初次描述了它们的制备。这些化合物的一般制备路线包括在溶剂的存在下以回流状态,使钌3(CO)12与配体的反应。为这些反应所选择的溶剂通常为苯。钌3(CO)12与二烯、硫醇和膦的反应在回流下在溶剂苯中发生。
[(二烯)钌(CO)3]化合物的另一条路线包括采用C8H12钌(CO)3作为原料的置换反应。如上所述,该化合物通过在苯中回流1,5-环辛二烯和钌3(CO)12的混合物来制备。然后,使C8H12钌(CO)3与另一种二烯(例如C6H8)也在回流的苯中进行反应,生成所需的产物。
最后,他们使用的反应路线基本与上述的相同,只是溶剂体系稍有改进。这样,钌3(CO)12与配体在非苯的溶剂体系中反应。具体而言,采用了较高沸点的溶剂(例如甲苯)。该557专利公开的较高沸点的溶剂体系导致了反应速率和产物产率的提高。
虽然在科技化学文献中有许多现有技术公开了LxM(CO)y[L=中性配体,M=钌或锇,x=1-4,且y=1-5]型化合物的信息,但是据信上述的合成方案描述了它们的合成。
虽然现有技术的方案采用非反应性溶剂体系来合成式LxM(CO)y[L=中性配体,M=钌或锇,x=1-4,且y=1-5]化合物,但没有教导或建议一种净态或无溶剂的反应路线。此外,现有技术的参考文献表明基于羰基的配合物的合成,即钌配合物的合成需要长反应时间。例如,在美国专利No.6,114,557中,生成(C6H8)钌(CO)3的反应要进行24小时的时间。因此,需要一种现有技术没有教导或建议过的新型净态合成路线(其中,配体L既是溶剂又是反应物)。所述净反应路线使反应比现有技术的方法更快地完成,同时仍能以高产率生成所需产物。还优选采用净反应体系,这是因为所需的成分更少而简化了合成工艺。
包含将金属羰基化合物与过量的中性配体回流以生成第一混合物;从第一混合物中蒸发任何过量的中性配体以生成第二混合物;蒸馏第二混合物以生成基于羰基的化合物。所述金属羰基化合物是钌或锇羰基配合物。所述中性配体可以是膦、亚磷酸根、胺、胂、茋(stibene)、醚、硫醚、亚烷基(RCH=)、亚硝酸根、异腈、硫代羰基,直链、支化或环状的单烯烃,直链、支化或环状的二烯,直链、支化或环状的三烯,二环烯烃,二环二烯,二环三烯,三环烯烃,三环二烯,三环三烯和炔,鼎锋贵金属回收表示以上就是从贵金属钌,锇的应用及其化合物回收价格的答案。
"鼎锋贵金属回收含金、银、钯、铑、铂、锗、铱、钌等贵金属,这是我们贵金属回收其中的业务。如果你有、银、钯、铑、铂、锗、铱、钌等贵金属需要回收,和我们联系,我们将会给你一个满意的价格。"